

Multi-Channel Fiber-Based Source of Polarization Entangled Photons with Integrated Alignment Signal

Shawn X. Wang & Gregory S. Kanter

NuCrypt, LLC

Evanston, IL

Prem Kumar

Center for Photonic Communication and Computing Northwestern University

Funding provided by the Army Research Office*

*information contained herein does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred

- Quantum "linkage" between a pair of photons: Signal and Idler
- For polarization entanglement: signal and idler are individually unpolarized but polarizations are non-locally correlated
- Considered a core tool of quantum information systems
- Need a spontaneous two-photon process: Parametric downconversion $\{\chi^{(2)} \text{ crystal}\}\$ or four-wave mixing (FWM) $\{\chi^{(3)} \text{ fiber}\}\$
- •• Scientific experiments such as teleportation and tests of Bell's inequality (non-local realism of quantum mechanics)
- Quantum Communications applications such as Quantum cryptography, Quantum games (efficient bidding and auctions), Quantum metrology, ...?

Why Generate Entanglement in Fiber?

- Low loss coupling to fiber for long distance distribution – maximum coincidence counts ~(Loss)²
- Scalable to high repetition rates (no power handling issues)
- Potential for low-cost manufacturability with rugged, reliable operation

Main Issue with Fiber:

- Raman scattering can limit performance and usable spectral bandwidth
 - For telecom pairs control Raman by spacing signal and idler closely and/or cooling fiber
 - But multiple signal-idler pairs require wide operating bandwidth (WDM entanglement)

- Generate multiple entangled photon pairs in fiber
- All commercially available fiber-coupled components
- •• Provisioning of alignment signal to orient external measurement axis
 - Entangled light is unpolarized hard to align measurement axis
 - Built in classical signal with definite orientation to the generation axis
 - No moving parts required
 - Systematic alignment procedure is fully automatable

Schematic Diagram of the EPS

Measurement Setup and Procedure

Idler

Signal

4-layer LC Electronically Controlled Polarization Analyzer

Metrics:

•Two Photon Interference (TPI) Visibility •Coincidence Count Rate

Estimated Visibility:

$$Vis_{est} = \frac{C_{max} - A}{C_{max} + A}$$

 C_{max} – coincidence counts at peak of TPI fringe A – Accidental coincidence counts

Note: All values are dark count subtracted

Performance still good

 TPI > 0.71 indicates violation of Bell's inequalities (nonclassical statistics)

- Sit at fringe minimum with no adjustments to source
- Very stable output

Multi-Channel Experiment

Fiber PBS out

- Entangled photon pairs generated directly in fiber in three channel-pairs on the ITU grid
- •• Systematic, automatable scheme for aligning measurement basis by using built-in alignment signal
- Source constructed entirely of commercially available fiber coupled components
- •• Two-photon interference performance comparable to laboratory experiments (92% visibility at room temperature) while being manufacturable, stable, and easy to use