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We demonstrate theoretically and experimentally that secure communication using intermediate-
energy (mesoscopic) coherent states is possible. Our scheme is different from previous quantum
cryptographic schemes in that a short secret key is explicitly used and in which quantum noise hides
both the bit and the key. This encryption scheme can be optically amplified. New avenues are open
to secure communications at high speeds in fiber-optic or free-space channels.

For the encryption of data with perfect secrecy [1] that
cannot be broken with any advance in technology, one
may in principle employ one-time pad with secret key
obtained by the BB84 [2] quantum cryptographic tech-
nique for key expansion. Such an approach is possible [3],
however, it is slow and inefficient because the key length
needs to be as long as the data, and it also requires a
nearly ideal quantum communication line that is diffi-
cult to obtain in long distance commercial systems such
as the Internet core. On the other hand, for both military
and commercial applications, there are great demands for
secret communications that are fast and secure but not
necessarily perfectly secure. (There are many practical
issues, human as well machine based, that would make
theoretical perfect security in specific models not so im-
portant in real life [4]). In the following, a new scheme
based on ideas similar to those of Ref. [5] is described for
secure data encryption that can be operated at optical
speeds with conventional optical technology, and a pro-
totype experimental implementation is presented. In this
scheme, a short secret key is classically extended and then
used to encrypt data in a way that the quantum noise of
the coherent states protects both the data and the key.

The following line of reasoning describes the ideas [6]
that led to the development of our present kind of quan-
tum cryptographic schemes. One crucial element for ob-
taining security in BB84 involves the detection of small
intrusion on weak signals, which is difficult to achieve in
a network environment. This problem would be allevi-
ated if quantum signal sets of higher energy are selected
for different bit values by a secret key shared between
the sender (Alice) and the receiver (Bob). It is impor-
tant to remember that some shared secret key is needed
in BB84 for message authentication during protocol exe-
cution. The resulting scheme is acceptable as key expan-
sion if the new key is secure even if the shared secret key
is known to the attacker after the user communications
are completed. When a secret key is used to identify
the signal set, it would be a secret CDMA (Code Divi-
sion Multiple Access) scheme classically, which does not
allow key expansion because the user and the attacker
have the same observation. We would discuss elsewhere
how a corresponding KCQ (Keyed CDMA in Quantum
Noise) scheme can be used to obtain key expansion in the

quantum case. In this paper, we are concerned with the
use of KCQ for data encryption.

There are two basic problems with classical encryp-
tion that does not employ the inefficient one-time pads.
One is that the total data uncertainty H(X) given ob-
servation Y is bounded above by the key uncertainty,
H(X) ≤ H(K) [1]. The other is that the key K may
be found by a known-plaintext attack when the eaves-
dropper (Eve) knows the output-input pairs (Y,X) for
some data length. In our scheme, H(X) is not bounded
by H(K) because Eve cannot have the observation Y

that Bob obtained via the optimal quantum measurement
utilizing the key K. To extract information from even
a full copy of the quantum signal without knowing K,
Eve has to make a sub-optimal measurement that would
yield information on all possible signal sets for the pur-
pose of either estimating X or finding K from a known-
plaintext attack. As a result, Bob has a better chan-
nel/observation than Eve. Also, in contrast to classical
cryptography, one can prove the security of our scheme
against ciphertext-only attacks, although only individual
attacks are described in this paper. One can show that, in
a properly designed system, even an exponentially pow-
erful search with known-plaintext attacks cannot succeed
because Eve does not have Y as above. Practically, our
scheme can run at high speeds because there is no need
for a long key K.

Consider the following scheme in which each data bit is
encoded into a coherent state of an infinite-dimensional
space, referred to as a “qumode”. As in [5], there are M
possible states

|α0(cos θl + i sin θl)〉, θl = 2πl/M (1)

for a real α0 and l ∈ {0, · · · , M − 1}, forming M/2 pairs
{l, l + M/2}. A seed key K is used to drive an encryp-
tion mechanism whose output is a much longer running

key K′ that is used to determine, for each qumode carry-
ing bit b (= 0, 1), which pair of signals (signal set) is to
be used. Each pair may be macroscopically distinguish-
able since the inner product of any two basis states is
exp(−2|α0|2). For large M , a lower bound on the ob-
tained mean-square error (δθ)2 [7] that goes as 1/|α0|2
shows that asymptotically when M ≫ |α0| the attacker’s
error probability PE

e tends to 1/2, the guessing level, in
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FIG. 1: P E

e as a function of M for |α|2 = 1, 10, 100, 1000.

an individual attack on the data bit b. That this result
holds in the limit M → ∞ for fixed |α0| is intuitively
obvious. A two-mode coherent-state realization similar
to Eq. (1), with |α0 cos θl〉|α0 sin θl〉, can also be used
and the modes can be interpreted as ones of polariza-
tion, time, frequency, or whatever.

Numerical calculation of the optimal POVM for indi-
vidual attack on bit discrimination for the M -ry case has
shown [8] that the minimum probability of error PE

e for
an eavesdropper can be made arbitrarily close to 1/2 for a
given coherent-state amplitude α. The value PE

e
→ 1/2

for a fixed average number of photons |α|2 is achieved
by increasing the number of levels M . As shown in Fig-
ure 1, PE

e goes very fast to the asymptotic pure-guessing
limit of 1/2 as M increases. The above POVM calcu-
lation demonstrates that in this scheme an eavesdrop-
per cannot obtain the bits sent regardless of the preci-
sion of her devices. The optimal POVM gives the max-
imum amount of information she could obtain from the
sequence of physical signals sent without knowing the
key. This uncertainty is due to the quantum noise of
light and cannot be overcome with one’s precision capa-
bilities. Bob, on the other hand, by knowing the key
can extract information with greater precision. His deci-
sion has to be made only between two nearly orthogonal
states in the same basis defined by a given K′. His prob-

ability of error is [9] PB
e

= 1

2

(

1 −
√

1 − e−2T |α|2
)

, where

T is the transmissivity of the channel. For large values
of |α| the minimum probability of error PB

e is negligible,
which makes possible an excellent signal recovery by the
legitimate receiver. The case of collective attacks is more
complicated and cannot be discussed here, in large part
because there is no meaningful approach for evaluating
the optimal bit error, even in the classical case. However,
the entropy bound (Holevo’s theorem) could be used to
show the ideal nature of this scheme for the criterion of
data entropy.

The attacker can also try to find the key K based
on her copy of the quantum signals, with or without
some known-plaintext (data) corresponding to the sig-
nals. Even in a known-plaintext attack, the signal quan-
tum fluctuation would yield, from the number of possibil-

FIG. 2: Left side: Basic ciphering scheme with qumodes of
polarization. Right side: Two neighboring bases in an M-
ry manifold on a great circle of Poincaré’s sphere. Bits 0
and 1 are antipodals for each basis. Closest states (similar
polarization ellipses) represent opposite bit values.

ities in each qumode, an exponential number of possible
K′ in a sequence of data bits. To identify K from such
noisy observations of possible K′ would involve an expo-
nential search, which can always be launched against a
key in known-plaintext attacks but which is currently be-
lieved to be proven impossible computationally even with
a quantum computer. Note that the attacker has a much
more difficult job of estimating the signal pair from M/2
possible ones, than the user who tries to discriminate 2
possible known states. A detailed quantitative treatment
would be given elsewhere. It is important to note that, in
the case of classical cryptography, if the running key K′

is used directly as one-time pad on the data, the result
is well known [10] to be insecure against known-plaintext
attacks. In our case, this attack is thwarted by quantum
effects as explained above.

Consider an implementation of the above scheme as de-
picted in Fig. 2. This particular type of KCQ scheme will
be refered to as αη (for coherent states and efficiency). In
the encryption scheme for this new protocol, sketched on
the left side in Fig. 2, Alice uses an explicit short secret
key K, extended to a longer key K′ by another encryp-
tion mechanism such as a stream cipher, to modulate the
parameters of a multimode coherent state. For the free-
space implementation to be presented, the qumodes are
the two orthogonal modes of polarization. In this case,
Alice uses the running key K′ to specify a polarization
basis from a set of M/2 uniformly spaced two-mode bases
spanning a great circle on the Poincaré sphere, as shown
on the right in Fig. 2. Each basis consists of a polariza-
tion state and its antipodal state at an angle π from it,
representing the 0 and 1 bit value for that basis.

The message X is encoded as Y(X,K′). This mapping
of the stream of bits onto points on the surface of the
Poincaré sphere is the information to be shared by Alice
(A) and Bob (B). Because of his knowledge of K′, Bob is
able to make a precise demodulation operation, produc-
ing the plaintext X. He uses K′ to apply the requisite
polarization transformation to the received sequence of
polarization states to return them to the linearly orthog-
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FIG. 3: Schematic of the experimental setup. SPCM, single
photon counting module; PBS, polarization beamsplitter; L,
lens; P, polarizer; NDF, neutral density filter. Two (optional)
telescopes are shown for field work.

onally polarized condition, representing the two original
bits of the message X. Bob’s demodulation is the inverse
mapping transformation that was utilized by Alice.

Figure 3 shows a table-top experimental setup we
have implemented as a proof-of-principle demonstra-
tion of this scheme. The modulation systems utilized
both at the transmitter and receiver ends are electro-
optic modulators (EOMs)(New Focus, model 4104), the
laser (Toshiba, model TOLD9225M) operates at 670nm,
and the detectors are single photon counting modules
(Perkin-Elmer, model SPCM-AQR-16) with interference
filters of 10nm bandwidth in front. A polarization beam
splitter (PBS) is used at the receiver to discriminate be-
tween the orthogonal linear polarization states. Lenses
(L) are used to optimize the beam Rayleigh range within
the EOMs. A personal computer containing an interface
card (National Instruments, model PCI-6111E) is used
to control the EOM’s (digital-to-analog operation). The
same card is also used for counting the output pulses
from the detectors. In this configuration, a horizontally
(H) or vertically (V) polarized light pulse representing
bit 0 or 1 is generated and transformed into an ellipti-
cally polarized light state by application of the voltage
Vk (k ∈ K′). This voltage introduces a phase differ-
ence ∆φk between the physical axes of the EOM, where
∆φk = π

2

Vk

Vπ

+ φ0, and Vπ and φ0 are specific to each
modulator. This system operates, with bulk optics, at
200kHz rate for demonstration purposes and faster fiber
based systems (∼1GHz) are being implemented for free
space as well as fiber channels.

Figure 4 shows a sequence of bits as received by Bob.
The clear separation of the 0 and 1 histograms allow him
to make bit decisions with no error. The same sequence
of bits as seen by Eve are shown in Fig. 5, giving her a
very high probability of error (PE

e ∼ 1/2) in bit decisions
because of her lacking the key.

As an illustration of how the quantum noise of light
can be utilized by the legitimate receiver on his behalf,
in Fig. 6 we show the uncertainty in the polarization an-

FIG. 4: Difference of V and H counts (V−H) from Bob’s
receiver operating at 200kHz, with the average number of re-
ceived photons 〈n〉 = |α|2 = 27 and M = 50. The right inset
shows the corresponding histogram indicating clear separa-
tion between the 0 and 1 bit values.

FIG. 5: V−H counts from Eve’s receiver in an opaque attack
in which she takes all the power from the channel that would
have gone to Bob. All operating parameters are the same as
in Fig. 4, except for Eve lacking the key K

′. The correspond-
ing histogram on the right shows that distinct bits are not
distinguishable by her.

gle produced by a two-mode measurement for an average
total photon number 〈n〉 ≃ 38. Regions of low-variance
values are seen around 0 and π/2 settings of the input
polarization state [cf. Fig. 6(c)]. Such determination of
the polarization angle with angle-dependent uncertainty
shows that a higher degree of precision in angle determi-
nation can be achieved by an observer with a prior infor-
mation on how to set the measuring apparatus than an-
other who does not have this knowledge. From Fig. 6(c)
one can observe that for PBS-axis orientations close to
the incoming field polarization direction the uncertainty
in determination of the angle is small. The polarization
angle is obtained by averaging arctan

√

nV /nH over the
occurrence of nH and nV , the photon numbers reaching
the detectors [cf. Fig. 6(b)]. The approximation that θ
can be obtained through arctan

√

nV /nH is adequate for
mesoscopic signals but becomes inadequate as 〈n〉 → 0
(quantum phase domain). Setting PBS without knowl-
edge of this preferred orientation leads, in average, to a
larger error in determination of the polarization angle.
On the other hand, an observer setting his analyzer sys-
tem close to the field polarization direction (0 or π/2) is
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FIG. 6: (a) Measurement of the polarization angle through
two-mode direct detection with use of a PBS. A λ/2 waveplate
is rotated to produce different polarization angles φ. (b) Un-
certainties in φ, ∆φ, arise owing to photon-number fluctua-
tions around 〈nH〉 and 〈nV 〉, where nH and nV are the photon
numbers sampled by the two detectors (〈nHnV 〉 = 〈nH〉〈nV 〉).
(c) Variance in the angle φ obtained via the two-mode mea-
surement versus the angle set by the λ/2 plate. Solid line is
the theoretical prediction, not a fit, without considering the
detector noises (mainly “dark” and Johnson noises), which
will set the ultimate precision limit in these measurements.

FIG. 7: Number of bases Nσ covered by the quantum noise
as a function of the number of photons 〈n〉 = |α|2. For a
given 〈n〉, Alice repeatedly sets every basis, separated by π/M
(M = 500), one by one, by applying a voltage to the EOM.
By measuring nH and nV , Eve performs an angle reconstruc-
tion in an attempt to identify the basis used. Eve’s standard
deviation around the basis sent by Alice gives Nσ. Line is the
theory.

only limited by the optical precision of the analyzer used
(which can be made arbitrarily small), and the noise in
the detectors.

The cryptography system should be designed so that
the uncertainties caused by the quantum noise of light in
the measurement of the polarization angles is large. It
can be shown that the number of bases Nσ within a stan-
dard deviation of the measured angle is Nσ = M/(π|α|).
Fig. 7 shows experimental results that confirm this de-
pendence.

The effect of noise on signal recovery by an eavesdrop-
per in an opaque attack can be simulated by sending
repeatedly the same bit, but varying K′, from A to
B when B (playing Eve) does not apply the key to
demodulate the signals. In the following sequence S,
the first number in a brace is the basis set by Alice

(selected from M = 200 possible positions with Nσ ≃ 6,
and correctly recovered by Bob with the use of the
key) while the second number is the basis extracted
by Eve through a single measurement of nH and nV .
S = {110, 117}, {84, 78}, {108, 99}, {90, 91}, {100, 107},

{102, 97}, {84, 84}, {110, 105}, {110, 111}, {114, 105}, {82, 86},

{100, 95}, {92, 72}, {108, 108}, {102, 90}, {108, 97}, {96, 93},

{110, 103}, {112, 121}, {86, 86}, {102, 100}, {88, 91}, {102, 94},

{106, 98}, {118, 135}. Clearly, Eve makes a large number
of errors in determining the transmitted bases.

In conclusion, we have demonstrated that under indi-
vidual attacks Yuen’s encryption protocol is secure with
an adequate number of bases M and without the need for
intrusion detection. Key expansion is also possible un-
der this scheme, due to the better observation available to
Bob with knowledge of the key. Significantly, the encryp-
tion system allows for signal amplification as long as the
security is guaranteed at the source for the following rea-
son. While Eve has to resolve M levels to tell the bit or
K′ without knowing the key, Bob has to resolve only two
levels with the key. Thus, amplifier noise would hinder
Eve’s attack while it will not disrupt Bob’s decryption.
Furthermore, there is no need to decrypt/re-encrypt at
the nodes of a properly designed communication line with
a moderate number of amplifiers.
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